

Rebecca Bradley-Lowell December 8, 2015 Page 1 of 3

December 8, 2015

Rebecca Bradley-Lowell, Senior Planner Community & Economic Development Department City of Mount Vernon 910 Cleveland Ave / PO Box 809 Mount Vernon, WA 98273

# SUBJECT: LAND USE FORECAST TECHNICAL MEMORANDUM

Ms. Bradley-Lowell:

The purpose of this memo is to summarize the existing and forecasted land use data which were used to develop the Mount Vernon citywide transportation planning model.

## Introduction

The accuracy of a transportation planning model depends largely on the quality of the land use data used in the model. The location, quantity, and type of land use, both now and in the future, form the backbone of the citywide planning model which is used for the City's Transportation Element update.

As a component of the City's Comprehensive Plan, the Transportation Element is required to be internally consistent with the requirements and assumptions used throughout the Comprehensive Plan. Most important is the use of consistent future land use assumptions. The land use data described here provides that consistency: it is based on the City's 2036 growth targets for population and employment which were developed by Skagit Council of Governments (SCOG), BERK Consulting, and the City of Mount Vernon.

## **Existing Land Use**

For the purposes of transportation planning, land use can be stratified into two general categories: households and employment. Residential land use forecasts are often expressed in terms of population, however for travel demand modeling it is helpful to convert population into trip-generating households.

Current population and household estimates are summarized in **Table 1**. Population represents the current SCOG estimate while average household size was provided by the City and is based on 2010 Census data.

**Table 1.** Existing Population Estimate

| Jurisdiction      | 2015<br>Population | Average<br>Household Size<br>(persons / HH) | 2015<br>Households |
|-------------------|--------------------|---------------------------------------------|--------------------|
| Mount Vernon UGA  | 34,969             | 2.74                                        | 12,762             |
| C COC 2014 DEDV C | 1. 2014            |                                             |                    |

Source: SCOG 2014, BERK Consulting 2014

Existing employment estimates were provided by the City and based on data provided by the Washington State Employment Security Division (ESD). Employment estimates were gathered for employment type and number of employees. Modeled employment type was stratified into eight different employment categories, which are consistent with the categories used in the SCOG regional transportation model. **Table 2** summarizes the



employment categories, including their corresponding North American Industry Classification System (NAICS) code(s), number of employees, and share of total citywide employment.

| NAICS Code                            | Employment Sector                              | Employees | Percent |
|---------------------------------------|------------------------------------------------|-----------|---------|
| 44, 45                                | Retail                                         | 3,418     | 20.7%   |
| 51-56, 61, 71, 72, 81                 | Finance, Insurance, Real Estate, and Services  | 2,758     | 16.7%   |
| Public sector,<br>excluding education | Government                                     | 1,265     | 7.7%    |
| 61                                    | Education                                      | 1,995     | 12.1%   |
| 22, 42, 48, 49                        | Wholesale Trade, Transportation, and Utilities | 940       | 5.7%    |
| 31-33                                 | Manufacturing                                  | 890       | 5.4%    |
| 11, 21, 23                            | Construction and Resources                     | 1,144     | 6.9%    |
| 62                                    | Health                                         | 4,093     | 2.5%    |
|                                       | Total                                          | 16,503    | 100.0%  |

# Table 2. Existing Employment Estimates

Source: ESD 2015, City of Mount Vernon 2015

## Land Use Growth Forecast

To ensure internal consistency with the other elements of the Comprehensive Plan Update, the citywide planning model used land use forecasts which are consistent with SCOG growth allocations. These forecasts include total population growth of 12,434 and employment growth of 4,785. **Tables 3** and **4** summarize SCOG population growth allocations and estimated household growth using average household size.

## Table 3. Mount Vernon 2015-2036 Population Allocation

| Jurisdiction     | 2015<br>Population | Population<br>Allocation | 2036<br>Population | Compound Annual<br>Growth Rate |
|------------------|--------------------|--------------------------|--------------------|--------------------------------|
| Mount Vernon UGA | 34,969             | 12,434                   | 47,403             | 1.46%                          |
|                  | 1.: 0014           |                          |                    |                                |

Source: SCOG 2014, BERK Consulting 2014

## Table 4. Mount Vernon 2015-2036 Household Growth

| Jurisdiction     | Population<br>Allocation | Average<br>Household Size<br>(persons / HH) | Household<br>Growth |
|------------------|--------------------------|---------------------------------------------|---------------------|
| Mount Vernon UGA | 12,434                   | 2.74                                        | 4,537               |

Source: SCOG 2014, BERK Consulting 2014

Citywide SCOG employment growth allocations are summarized in **Table 5**. The SCOG employment forecast describes growth in a total of five employment categories. For demand modeling purposes, growth allocations were disaggregated to the eight categories described in Table 2 using NAICS code associations and distributing proportionately to the existing employment within each category.



Rebecca Bradley-Lowell December 8, 2015 Page 3 of 3

| NAICS Code                | <b>Employment Sector</b> | Net Growth, 2015-2036 |
|---------------------------|--------------------------|-----------------------|
| 44, 45, 72                | Retail                   | 201                   |
| 51-56, 62, 71, 81         | Services                 | 1,936                 |
| 61, 92                    | Government/Education     | 1,774                 |
| 22, 23, 31-33, 42, 48, 49 | Industrial               | 874                   |
| 11, 21                    | Resources                | 0                     |
|                           | Total                    | 4,785                 |

## Table 5. Mount Vernon 2036 Employment Growth Forecast

Source: SCOG 2014, BERK Consulting 2014

#### Land Use Growth Location

The geographic units or Transportation Analysis Zones (TAZs) used to geographically assign land use in and around Mount Vernon are consistent with the structure developed by SCOG for the regional planning model. A total of 91 internal TAZs were used to represent the City and UGA. Residential land use is represented in the traffic model in terms of households while employment is modeled using the categories defined in Table 2. The existing household and employment totals described above were checked against TAZ-based GIS data provided by SCOG and minor revisions were made to reconcile the latest land use estimates with SCOG geospatial data.

City staff distributed citywide population and employment growth forecasts to the modeled TAZs based on an internal buildable lands analysis and through collaboration with TSI. Each TAZ was assigned an estimated 20-year growth capacity, expressed in (total) households and employment (by type).

The transportation model uses a household cross-classification scheme which represents households by number of occupants and number of vehicles, based on SCOG's analysis of 2010 census data. To prepare the total household growth forecast for input to the model, TAZ-based household growth was cross-classified using the existing (SCOG) cross-classification shares. The citywide traffic forecasting model will be described in greater detail in a subsequent memo.

#### Conclusion

The land use data described in this memo is consistent with the latest available residential and employment data as well as the most recent SCOG growth forecasts which will be incorporated to the City's Comprehensive Plan update.

I trust this provides you with an understanding of the existing and future land use information which forms the backbone of the travel demand component of the Mount Vernon citywide planning model. If you have any questions or need clarification related to the approach described here, please contact me at your convenience.

Regards,

**Transportation Solutions, Inc.** 

Andrew L. Bratlien, PE Senior Transportation Engineer



Rebecca Bradley-Lowell December 14, 2015 Page 1 of 4

December 14, 2015

Rebecca Bradley-Lowell, Senior Planner Community & Economic Development Department City of Mount Vernon 910 Cleveland Ave / PO Box 809 Mount Vernon, WA 98273

# SUBJECT: TRAFFIC FORECASTING TECHNICAL MEMORANDUM

# Introduction

The purpose of this memo is to summarize the Mount Vernon citywide travel demand model (Model), which was developed by TSI with support from Skagit Council of Governments (SCOG) and the City of Mount Vernon.

This memo describes the major components of the Mount Vernon TDM, including street network development, trip generation, trip distribution, and traffic assignment. It also summarizes model calibration and the process by which the calibrated model forecasts future travel demand.

# Background

The Mount Vernon TDM was developed in PTV Visum 14.00-17 software and is based on SCOG's regional travel demand model. Travel demand is represented in terms of PM peak hour vehicle trips. The base year model has been calibrated to match intersection turning movement counts collected at 101 locations throughout the city in November of 2013.

The accuracy of a travel demand model depends on the underlying land use data, i.e. the location, quantity, and nature of housing and employment. The development of the existing and forecasted land use data which are used in the citywide TDM are described in the Land Use Forecast Technical Memo dated December 8, 2015.

## **Network Development**

Existing transportation facilities were inventoried as described in the Existing Level of Service Technical Memo dated December 8, 2015. The network inventory was used to verify and expand the SCOG regional model street network in order to ensure that the citywide model accurately represented (1) the City's arterial street system, (2) local streets which are outside the scope of the regional model, and (3) regionally significant routes including state highways and I-5.

Link and node capacities and volume-delay functions were kept consistent with the SCOG regional model.

# **Traffic Analysis Zone Structure**

The function of a Traffic Analysis Zone (TAZ) in a travel demand model is to generate vehicle trips to and from the roadway network. In general internal TAZs are specific geographic areas that are associated with specific land use data. The land use data associated with a TAZ determines the number of trips that the TAZ produces to or attracts from the other TAZs in the model. This model's traffic analysis zone (TAZ) structure consists of 98 zones, of which 91 are internal to the Mount Vernon area.



Rebecca Bradley-Lowell December 14, 2015 Page 2 of 4

There are 7 external zones surrounding the modeled study area. These zones are designed to incorporate trips that are generated to and/or from points outside the network. Although these are labeled zones, they actually represent links to regions outside the model and do not represent a defined area. These zones do not reflect any land use assumptions; only vehicle trips. Trips to and from each external zone are determined from actual traffic counts and future trips are based on historical growth records. These external zones play a two-part role in the model: (1) only a certain portion of the trips in an external zone interact with TAZ's within the model, and (2) the remained of the trips in any external zone interact with other external zones outlying the study area. These trips are called through trips since they have neither an origin nor destination within the study area yet they pass through the study area, impacting the network.

# **Trip Generation**

Trips are generated by land uses and are assigned a trip type. In general, three basic trip types are represented in the travel demand model:

- Home-Based Work (HBW): Trips with one end at the traveler's home and the other end at the traveler's place of employment
- Home-Based Other (HBO): Trips with one end at the traveler's home and the other end at somewhere other than the traveler's place of employment, e.g. shopping trips
- Non-Home-Based (NHB): Trips without an end at the traveler's home

Trip generation rates used in the Mount Vernon model are based on SCOG and ITE trip generation rates and are representative of PM peak hour vehicle trips. **Table 1** displays the trip generation rates used in the model.

Residential land use is quantified in households and cross-classified for trip generation purposes. The household cross-classification scheme follows the format  $HH(a)_(b)$ , where (a) represents the number of people in the household and (b) represents the number of workers in the household. Employment land uses are defined in the Land Use Forecast Technical Memo.

Trip generation for external TAZs is based on current and historical traffic volumes which were provided by SCOG or WSDOT.



# Table 1. Trip Generation Rates

|               | T.L. Mar   | <b>T-4-1</b> |        | Origins |        | Destinations |        |        |
|---------------|------------|--------------|--------|---------|--------|--------------|--------|--------|
| Land Use Code | Units      | Total        | HBW    | HBO     | NHB    | HBW          | HBO    | NHB    |
| HH1_0         | Households | 0.24         | 0      | 0.0870  | 0.0242 | 0            | 0.1063 | 0.0242 |
| HH1_1         | Households | 0.32         | 0.0268 | 0.0502  | 0.0367 | 0.1072       | 0.0614 | 0.0367 |
| HH2_0         | Households | 0.37         | 0      | 0.1340  | 0.0372 | 0            | 0.1637 | 0.0372 |
| HH2_1         | Households | 0.49         | 0.0248 | 0.1271  | 0.0528 | 0.0990       | 0.1554 | 0.0528 |
| HH2_2         | Households | 0.75         | 0.0632 | 0.1184  | 0.0865 | 0.2526       | 0.1447 | 0.0865 |
| HH3_0         | Households | 0.51         | 0      | 0.1826  | 0.0507 | 0            | 0.2231 | 0.0507 |
| HH3_1         | Households | 0.67         | 0.0225 | 0.1868  | 0.0710 | 0.0900       | 0.2283 | 0.0710 |
| HH3_2         | Households | 1.02         | 0.0668 | 0.2028  | 0.1147 | 0.2754       | 0.2479 | 0.1147 |
| HH3_3         | Households | 1.44         | 0.1210 | 0.2268  | 0.1656 | 0.4838       | 0.2772 | 0.1656 |
| HH4_0         | Households | 0.78         | 0      | 0.2805  | 0.0779 | 0            | 0.3428 | 0.0779 |
| HH4_1         | Households | 1.03         | 0.0259 | 0.3078  | 0.1075 | 0.1037       | 0.3761 | 0.1075 |
| HH4_2         | Households | 1.57         | 0.0793 | 0.3753  | 0.1716 | 0.3173       | 0.4588 | 0.1716 |
| HH4_3         | Households | 2.21         | 0.1673 | 0.3933  | 0.2511 | 0.6690       | 0.4807 | 0.2511 |
| RETAIL        | Employees  | 1.80         | 0.2304 | 0.4158  | 0.3780 | 0.0576       | 0.3402 | 0.3780 |
| FIRES         | Employees  | 0.70         | 0.1680 | 0.1579  | 0.1015 | 0.0420       | 0.1292 | 0.1015 |
| GOV           | Employees  | 0.70         | 0.2352 | 0.1386  | 0.0770 | 0.0588       | 0.1134 | 0.0770 |
| EDU           | Employees  | 1.56         | 0.6240 | 0.4118  | 0.0156 | 0.1560       | 0.3370 | 0.0156 |
| WTCU          | Employees  | 0.59         | 0.3634 | 0.0097  | 0.0590 | 0.0909       | 0.0080 | 0.0590 |
| MANU          | Employees  | 0.37         | 0.1243 | 0.0122  | 0.0962 | 0.0311       | 0.0100 | 0.0962 |
| RESOURCE      | Employees  | 0.35         | 0.2240 | 0       | 0.0350 | 0.0560       | 0      | 0.0350 |
| HEALTH        | Employees  | 1.06         | 0.2544 | 0.2390  | 0.1537 | 0.0636       | 0.1956 | 0.1537 |

Source: SCOG 2015

# **Trip Distribution**

Trips are distributed between TAZs using a gravity model, which is based on the theory that the attraction between two bodies is directly proportional to the bodies' masses and inversely proportional to the distance between the bodies. For the purposes of transportation modeling, a TAZ's "mass" is represented by the number of trips generated (produced by or attracted to) the TAZ while the distance factor is represented by route travel time.

The gravity model calculates the attractiveness between any two TAZs using the following utility function:

$$f(U) = a * (U^b) * (e^{cU})$$

In the utility function, U is defined as travel time between zones. The parameters a, b, and c are calibration factors which influence the weight of travel time in the gravity model. The gravity parameters used in the Mount Vernon model are shown in **Table 2** and are based on the values used in the SCOG regional model as well as guidance from *NCHRP Report 716* (TRB 2012).



| Table 2  | Trin | Distribution | Gravity | Model | Parameters |
|----------|------|--------------|---------|-------|------------|
| Table 4. | inp  | Distribution | Ulavity | MOUCI | ranneters  |

| Trin Dumpose           | Model Parameter |       |        |  |  |
|------------------------|-----------------|-------|--------|--|--|
| TTIP F ut pose         | a               | b     | с      |  |  |
| Home-Based Work (HBW)  | 100             | -0.02 | -0.125 |  |  |
| Home-Based Other (HBO) | 100             | -0.90 | -0.10  |  |  |
| Non-Home Based (NHB)   | 100             | -0.30 | -0.10  |  |  |

# **Traffic Assignment**

Trips are assigned to the street network uses an equilibrium assignment process which assigns vehicle trips from origin to destination along the calculated shortest travel time route, iteratively updating travel time as vehicle demand induces congestion throughout the network. As travel time is updated, shortest paths are recalculated and traffic re-assigned. The process continues until the model finds an equilibrium condition.

# Calibration

The base year model was calibrated based on guidance from FHWA's *Travel Model Validation and Reasonableness Checking Manual Second Edition* (FHWA 2010). Assigned link volume was measured against link volume counts which were derived from the 2013 PM peak hour intersection turning movement counts. Calibration statistics and a scatterplot of assigned vs. counted volume are provided in Appendix B.

# **Forecasting Future Travel Demand**

For the 20-year planning horizon (2035), the travel demand model assumes that the land use forecast developed by SCOG and the City are consistent with the City's updated Land Use Element and that growth rates are primarily based on historical trends for all roadways that function as connections between Mount Vernon and the surrounding region.

An initial traffic forecast scenario assumed that the existing street network will be maintained with no improvements in the next 20 years. This "no build" condition is used to identify locations where improvements will be necessary to maintain minimum LOS standards. A proposed street network improvement list was then developed and each project tested in the model to identify growth-driven improvement projects. The forecasted failures and identified improvement projects will be outlined in a subsequent memo.

The forecasting model can be updated and refined in the future to maintain consistency with any revisions to the City's land use forecast or transportation improvement project list, or to accommodate other feedback from the City.

# Conclusion

I trust this provides you with an understanding of the development of the Mount Vernon traffic forecasting model. If you have any questions or need clarification related to any part of the methodology described above, please contact me at your convenience.

Regards,

**Transportation Solutions, Inc.** 

Andrew L. Bratlien, PE Senior Transportation Engineer

APPENDIX A. TRAFFIC ANALYSIS ZONE STRUCTURE



APPENDIX B. MODEL CALIBRATION PLOT





8250 - 165th Avenue NE Suite 100 Redmond, WA 98052-6628 T 425-883-4134 F 425-867-0898 www.tsinw.com

June 13, 2016

Rebecca Bradley-Lowell, Senior Planner Community & Economic Development Department City of Mount Vernon 910 Cleveland Ave / PO Box 809 Mount Vernon, WA 98273

# SUBJECT: TRAFFIC FORECAST AND 20-YEAR NEEDS UPDATE

#### Introduction

TSI has updated the citywide traffic forecasting model to address comments from Skagit Council of Governements (SCOG) staff during the Comprehensive Plan review process. The purpose of this memo is to document the changes to the citywide traffic forecast and to identify the effects of those changes in terms of Level of Service (LOS) failures and necessary improvement projects in the 20-year planning horizon

## Traffic Forecasting Model Update and Regional Model Coordination

SCOG staff identified a desire for closer coordination between the Mount Vernon citywide planning model and the SCOG regional planning model, specifically with regard to trips entering and exiting the study area. The Mount Vernon citywide planning model includes seven external zones which represent travel demand at major access routes to and from the City and UGA. These include:

- I-5 at Skagit River Bridge
- I-5 at SR 534
- Riverside Drive (Old Highway 99) at Skagit River
- SR 9 northeast of Mount Vernon
- SR 9 southeast of Mount Vernon
- SR 536 east of Avon Allen Road
- McLean Road east of Avon Allen Road

To improve consistency between the regional and citywide travel demand forecasts, TSI reviewed the latest regional planning model provided by SCOG and identified forecasted 2040 traffic volumes at the links which represent the citywide model external TAZ loading points. The citywide model external trip generation calculations were updated to reflect these updated regional volume forecasts.

The updated regional volume forecasts were generally slightly higher than the initial citywide external trip forecasts. A significant portion of the increased travel demand represent "through" (external-to-external) trips, particularly on the I-5 corridor, which will not have a significant impact on the Mount Vernon street network. This memo will focus primarily on the operational impacts of the external trips



which impact the local street network, most of which have at least one trip end in the Mount Vernon study area.

# **Forecasted Level of Service Deficiencies**

The citywide operational model was updated with the volume forecasts generated by the updated citywide planning model. The updated operational model was used to identify forecasted LOS deficiencies. A total of 16 intersections and 12 segments in the study area are forecasted to fail by 2035 assuming no network improvements, as shown in Table 1 and Table 2.

The updated travel demand forecast results in several new intersection and segment LOS failures which are identified as highlighted facilities in Tables 1 and 2.

| Node<br>ID | Intersection                        | LOS<br>Standard | 2035<br>Delay<br>(s/veh) | 2035<br>LOS      |   |
|------------|-------------------------------------|-----------------|--------------------------|------------------|---|
| 723        | Continental Pl & Hoag Rd            | TWSC            | D                        | 57.0             | F |
| 724        | N Laventure Rd & Hoag Rd            | AWSC            | D                        | 56.1             | F |
| 789        | S 1st St/Freeway Dr & W Division St | Signal          | D                        | 140.4            | F |
| 801        | Waugh Rd & E Division St            | AWSC            | D                        | 49.2             | E |
| 828        | S 13th St & Broad St                | TWSC            | D                        | 50.4             | F |
| 833        | S Laventure Rd & E Section St       | AWSC            | D                        | 45.0             | E |
| 871        | I-5 SB Ramp & Anderson Rd           | TWSC            | D                        | 49.4             | E |
| 1058       | Blodgett Rd & Broad St              | TWSC            | D                        | 135.1            | F |
| 1072       | S 18th St & E Broadway              | TWSC            | С                        | 44.0             | E |
| 1085       | S 1st St & W Montgomery St          | TWSC            | С                        | 36.3             | E |
| 1100       | 30th St & E College Way             | TWSC            | D                        | 999 <sup>2</sup> | F |
| 1101       | N 30th St & E Fir St                | TWSC            | D                        | 86.7             | F |
| 1346       | S Waugh Rd & E Broadway             | TWSC            | D                        | 48.6             | E |
| 1715       | S 15th St & E Broadway              | TWSC            | С                        | 26.8             | D |
| 1895       | S 2nd St & Broadway                 | TWSC            | D                        | 71.8             | F |
| 6614       | Laventure Rd & Blackburn Rd         | AWSC            | D                        | 36.3             | Е |

## Table 1. 2035 Intersection Level of Service Deficiencies - Without Improvement

<sup>1</sup>TWSC = Two-Way Stop Control; AWSC = All-Way Stop Control; RAB = Roundabout; Signal = Signalized

<sup>2</sup>Delay exceeds limits of HCM methodology

Note: Deficiencies which have been newly identified using the updated traffic forecast are highlighted



| Segment<br>ID | Name                | Cross Street A | Cross Street B Functional<br>Classification |                    | V/C  | LOS |
|---------------|---------------------|----------------|---------------------------------------------|--------------------|------|-----|
| 1002          | I-5 NB              | Mt Vernon Rd   | Anderson Rd                                 | Freeway            | 0.90 | E   |
| 1003          | I-5 NB              | Anderson Rd    | Kincaid St                                  | Freeway            | 0.90 | D   |
| 1004          | I-5 NB              | Kincaid St     | College Way                                 | Freeway            | 0.91 | E   |
| 1005          | I-5 NB              | College Way    | George Hopper                               | Freeway            | 0.98 | Е   |
| 1006          | I-5 SB              | George Hopper  | College Way                                 | Freeway            | 0.88 | D   |
| 2001          | Division St         | Freeway Dr     | Ball St                                     | Principal Arterial | 1.04 | F   |
| 3022          | College Way         | I-5 SB ramps   | I-5 NB ramps                                | Principal Arterial | 0.91 | E   |
| 3044          | Anderson Rd         | I-5 NB ramps   | Cedardale Rd                                | Principal Arterial | 0.93 | Е   |
| 4009          | Hoag Rd             | Urban Ave      | Continental Pl                              | Minor Arterial     | 1.03 | F   |
| 4059          | Broad St            | Blodgett       | 9th St                                      | Minor Arterial     | 1.06 | F   |
| 5044          | 18 <sup>th</sup> St | Fir St         | Roosevelt Ave                               | Urban Collector    | 1.04 | F   |
| 5053          | Francis Rd          | 30th St        | Swan Rd                                     | Urban Collector    | 0.83 | D   |

 Table 2. 2035 Segment Level of Service Deficiencies - Without Improvement

Note: Deficiencies which have been newly identified using the updated traffic forecast are highlighted

#### **Recommended Transportation Network Improvements**

The projects identified in Table 3 are necessary to maintain acceptable LOS in 2035 with forecasted traffic growth. Project numbers are included for projects which are included in the transportation component of the City's draft Comprehensive Plan and the 2016-2021 Capital Improvement Plan (CIP).

The model update adds six projects to the recommended improvement list. Four of these projects were previously identified in the Mount Vernon CIP and Comprehensive Plan update. Two additional projects have been identified on 18<sup>th</sup> Street, including a nonmotorized completion project north of Fir Street and an intersection improvement project at Broadway.

| Comp.<br>Plan # | CIP #   | Project Name                                       | From/To                        | Est.Cost<br>(\$\$\$) | Description                  |
|-----------------|---------|----------------------------------------------------|--------------------------------|----------------------|------------------------------|
| T-150           | T-94-14 | Fir St Widening                                    | Laventure / Waugh              | 1,200                | Widen to 3 lanes             |
| T-240           | T-06-04 | 15 <sup>th</sup> St Improvements                   | Broad / Division               | 1,500                | Widen to 3 lanes             |
| T-040           | T-06-05 | Hoag/Laventure Interse                             | ction Improvements             | 700                  | Capacity improvements        |
| T-070           | T-06-10 | College Way @ I-5<br>Improvements                  | I-5 NB / I-5 SB                | 6,233                | Add 2 lanes and rechannelize |
| T-090           | T-07-04 | College Way / 30 <sup>th</sup> Inter               | section Improvements           | 700                  | Capacity improvements        |
| T-210           | T-07-05 | Division / Waugh Inters                            | ection Improvements            | 600                  | Capacity improvements        |
| T-310           | T-07-07 | Laventure / Section Inte                           | rsection Improvements          | 339                  | Capacity improvements        |
| T-200           | T-09-01 | First St / Division Inters                         | ection Realignment             | 3,000                | Capacity improvements        |
| T-370           | T-13-01 | Laventure / Blackburn Intersection<br>Improvements |                                | 700                  | Capacity improvements        |
| T-420           | n/a     | Anderson Rd                                        | Henson / Cedardale             | TBD                  | Complete sidewalks           |
| T-020           | n/a     | Hoag Rd                                            | Urban / Laventure              | TBD                  | Widen to 3 lanes             |
| T-290           | n/a     | Broad St                                           | Blodgett / 13 <sup>th</sup> St | TBD                  | Access management / RIRO     |

**Table 3**. Projects Necessary to Mitigate Growth-Related LOS Deficiencies



| Comp.<br>Plan # | CIP # | Project Name                        | From/To                       | Est.Cost<br>(\$\$\$) | Description                |
|-----------------|-------|-------------------------------------|-------------------------------|----------------------|----------------------------|
| T-010           | n/a   | Francis Rd                          | 30 <sup>th</sup> St / Swan Rd | TBD                  | Complete sidewalks         |
| n/a             | n/a   | 18 <sup>th</sup> St                 | Fir St / Roosevelt Ave        | TBD                  | Complete sidewalk/bike ln  |
| T-330           | n/a   | Waugh/Broadway Inters               | section Improvements          | TBD                  | New roundabout             |
| T-260           | n/a   | Broadway/2 <sup>nd</sup> St Interse | ction Improvements            | TBD                  | New all-way stop           |
| T-230           | n/a   | S 1 <sup>st</sup> St/Montgomery Int | ersection Improvements        | TBD                  | New all-way stop           |
| n/a             | n/a   | Broadway / 18th St Inter            | section Improvements          | TBD                  | Left-turn bays on Broadway |

Note: Deficiencies which have been newly identified using the updated traffic forecast are highlighted

Tables 4 and 5 identify all of the facilities that are deficient in the 2035 no action scenario and describe how they meet standards after the recommended improvements. The Division St (SR 536) Skagit River Bridge is forecasted to operate at LOS F by 2035 but is exempt from LOS standards per MVMC 14.10.060(C).

| Node |                                        | Proposed                             | 2035 No<br>Improvement |     | 2035 With<br>Improvement |     | Improvement                         |
|------|----------------------------------------|--------------------------------------|------------------------|-----|--------------------------|-----|-------------------------------------|
| ID   | Intersection                           | Intersection<br>Control <sup>1</sup> | Delay<br>(s/veh)       | LOS | Delay<br>(s/veh)         | LOS | Description                         |
| 723  | Continental Pl &<br>Hoag Rd            | TWSC                                 | 57.0                   | F   | 19.2                     | С   | Add TWLTL                           |
| 724  | N Laventure Rd &<br>Hoag Rd            | Signal                               | 56.1                   | F   | 27.6                     | С   | Signalize                           |
| 789  | S 1st St/Freeway Dr<br>& W Division St | Signal                               | 140.4                  | F   | 27.7                     | С   | Improve left-turn phasing           |
| 801  | Waugh Rd & E<br>Division St            | RAB                                  | 49.2                   | Е   | 15.3                     | В   | New roundabout                      |
| 828  | S 13th St & Broad St                   | TWSC                                 | 50.4                   | F   | 16.9                     | С   | Right-in right-out                  |
| 833  | S Laventure Rd & E<br>Section St       | Signal                               | 45.0                   | Е   | 21.3                     | С   | Signalize                           |
| 871  | I-5 SB Ramp &<br>Anderson Rd           | RAB                                  | 49.4                   | E   | 7.1                      | А   | New roundabout                      |
| 1058 | Blodgett Rd & Broad<br>St              | TWSC                                 | 135.1                  | F   | 15.7                     | С   | Right-in right-out                  |
| 1072 | S 18th St & E<br>Broadway              | TWSC                                 | 44.0                   | Е   | 22.0                     | С   | EB/WB left-turn lanes               |
| 1085 | S 1st St & W<br>Montgomery St          | AWSC                                 | 36.3                   | Е   | 20.1                     | С   | New all-way stop                    |
| 1100 | 30th St & E College<br>Way             | Signal                               | 999.0                  | F   | 23.0                     | C   | Signalize                           |
| 1101 | N 30th St & E Fir St                   | TWSC                                 | 86.7                   | F   | 32.0                     | D   | Add TWLTL                           |
| 1346 | S Waugh Rd & E<br>Broadway             | RAB                                  | 48.6                   | Е   | 7.2                      | А   | New roundabout                      |
| 1715 | S 15th St & E<br>Broadway              | TWSC                                 | 26.8                   | D   | 23.2                     | С   | Widen Broadway<br>to 3-lane section |
| 1895 | S 2nd St & Broadway                    | AWSC                                 | 71.8                   | F   | 19.9                     | С   | New all-way stop                    |
| 6614 | Laventure Rd &<br>Blackburn Rd         | Signal                               | 36.3                   | E   | 21.6                     | С   | Signalize                           |

#### Table 4. 2035 Intersection Level of Service Deficiencies - With Improvement



<sup>1</sup>TWSC = Two-Way Stop Control; AWSC = All-Way Stop Control; RAB = Roundabout; Signal = Signalized

| Segment | Name           | From/To                      | Functional<br>Classification | No<br>Improvement |     | With<br>Improvement |     | <b>Improvement</b>                       |
|---------|----------------|------------------------------|------------------------------|-------------------|-----|---------------------|-----|------------------------------------------|
| ID      |                |                              |                              | V/C               | LOS | V/C                 | LOS | Description                              |
| 2001    | Division St    | Freeway / Ball               | Principal<br>Arterial        | 0.90              | Е   | 1.04                | F   | LOS exempt<br>per MVMC<br>14.10.060      |
| 2002    | Division St    | Ball / Wall                  | Principal<br>Arterial        | 0.90              | D   | 0.91                | Е   | LOS exempt<br>per MVMC<br>14.10.060      |
| 3022    | College<br>Way | I-5 SB ramp /<br>I-5 NB ramp | Principal<br>Arterial        | 0.91              | Е   | 0.58                | А   | Add lanes and rechannelize               |
| 3044    | Anderson<br>Rd | I-5 NB ramp /<br>Cedardale   | Principal<br>Arterial        | 0.98              | Е   | 0.83                | D   | Complete sidewalks                       |
| 4009    | Hoag Rd        | Urban /<br>Continental       | Minor Arterial               | 0.88              | D   | 0.74                | С   | Widen to 3<br>lanes                      |
| 4059    | Broad St       | Blodgett / 9 <sup>th</sup>   | Minor Arterial               | 1.04              | F   | 0.75                | С   | Right-in right-<br>out<br>channelization |
| 5044    | 18th St        | Fir / Roosevelt              | Urban<br>Collector           | 0.91              | Е   | 0.76                | С   | Complete bike lane                       |
| 5053    | Francis Rd     | 30 <sup>th</sup> / Swan      | Urban<br>Collector           | 0.93              | Е   | 0.76                | С   | Complete<br>sidewalks                    |

# Table 5. 2035 Segment Level of Service Deficiencies - With Improvement



# **Future Improvements Identified in TIP**

A complete list of projects contained in the City's 2016-2021 TIP is provided in Table 6. Projects which are necessary to maintain LOS concurrency standards for the next 20 years are highlighted. While the highlighted projects will be necessary to maintain concurrency standards, the other projects in Table 6 may serve other transportation needs (e.g. transportation network completion, expanding non-motorized access) identified by the City.

| ID | CIP #   | Project Name                                      | From/To                                     | Est.Cost<br>(\$\$\$) | Description                                                                                          |
|----|---------|---------------------------------------------------|---------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------|
| 1  | T-94-14 | Fir St Widening                                   | Laventure / Waugh                           | 1,200                | Widen to 3 lanes                                                                                     |
| 2  | T-94-19 | Blackburn Rd<br>Widening                          | Cedar Hills Dr / Little<br>Mtn Rd           | 1,700                | Widen to current street standards                                                                    |
| 3  | T-94-21 | Blackburn Rd<br>Extension                         | Little Mtn Rd /<br>Eaglemont                | 2,400                | Widen to current street standards                                                                    |
| 4  | T-97-07 | Freeway Dr Widening                               | Cameron / College                           | 3,000                | Widen to 3 lanes & add sidewalks                                                                     |
| 5  | T-00-02 | Local Improvements                                | Various                                     | 3,000                | Maintain existing street network                                                                     |
| 6  | T-02-04 | Roosevelt Ave<br>Extension                        | Urban / Cameron                             | 11,100               | Extend Roosevelt Ave                                                                                 |
| 7  | T-02-06 | 30 <sup>th</sup> St Extension                     | Blackburn / Section                         | 1,300                | Extend 30 <sup>th</sup> Street                                                                       |
| 8  | T-02-10 | Fowler Trail<br>Conection                         | Laventure / 30 <sup>th</sup> St             | 200                  | Connect pedestrian path from<br>Laventure to 30 <sup>th</sup> St along the<br>extension of Fowler St |
| 9  | T-02-13 | 30 <sup>th</sup> St Pathway                       | Blackburn / Fowler                          | 150                  | Pathway parallel to 30 <sup>th</sup> St                                                              |
| 10 | T-02-17 | River Dike Trails                                 | Various                                     | 500                  | Utilize existing dike top as ped pathways                                                            |
| 11 | T-02-24 | 30 <sup>th</sup> St Improvements                  | Fir St / Manito Dr                          | 900                  | Street widening, complete sidewalks                                                                  |
| 12 | T-03-02 | Broad St Improvement                              | Blodgett / 12 <sup>th</sup> St              | 2,550                | Pedestrian safety improvements                                                                       |
| 13 | T-05-02 | Martin Rd<br>Improvements                         | Trumpeter /<br>McLaughlin                   | 2,000                | Realignment & reconstruction                                                                         |
| 14 | T-05-09 | Hickox Rd / I-5<br>interchange                    | Hickox Rd / I-5                             | 5,000                | Interchange completion                                                                               |
| 15 | T-06-04 | 15 <sup>th</sup> St Improvements Broad / Division |                                             | 1,500                | Widen to 3 lanes                                                                                     |
| 16 | T-06-05 | Hoag/Laventure Intersection Improvements          |                                             | 700                  | Capacity improvements                                                                                |
| 17 | T-06-06 | Broadway Extension                                | Dallas / Burlingame                         | 1,157                | Extend Broadway                                                                                      |
| 18 | T-06-07 | Laventure Rd Impr.                                | Hoag / south of Hoag                        | 550                  | Widen to current street standards                                                                    |
| 19 | T-06-10 | College Way @ I-5<br>Improvements                 | I-5 NB ramp / I-5 SB<br>ramp                | 6,233                | Add 2 lanes and rechannelize                                                                         |
| 20 | T-06-11 | I-5/SR 536<br>interchange                         | SW of existing I-5<br>interchange @ Kincaid | 20,000               | Construct new frontage rd,<br>new SB on-ramp at Section,<br>and new park & ride facility.            |
| 21 | T-07-02 | Signal maintenance                                | Various                                     | 270                  | Signal controller replacement                                                                        |
| 22 | T-07-03 | Truck rt improvement                              | Main St / Cleveland                         | 50                   | Raise road grade along<br>Milwaukee                                                                  |

## Table 6. City of Mount Vernon TIP 2016 – 2021





| ID    | CIP #       | Project Name                                       | From/To               | Est.Cost<br>(\$\$\$) | Description                  |
|-------|-------------|----------------------------------------------------|-----------------------|----------------------|------------------------------|
| 23    | T-07-04     | College Way / 30 <sup>th</sup> Inter               | section Improvements  | 700                  | Capacity improvements        |
| 24    | T-07-05     | Division / Waugh Interse                           | ection Improvements   | 600                  | Capacity improvements        |
| 25    | T-07-06     | 18 <sup>th</sup> / Blackburn Intersec              | tion Improvements     | 700                  | Capacity improvements        |
| 26    | T-07-07     | Laventure / Section Inter                          | rsection Improvements | 339                  | Capacity improvements        |
| 27    | T-08-01     | Sidewalk Gap Prgrm                                 | Various               | 50                   | Construct new sidewalks      |
| 28    | T-09-01     | First St / Division Intersection Realignment       |                       | 3,000                | Capacity improvements        |
| 29    | T-13-01     | Laventure / Blackburn Intersection<br>Improvements |                       | 700                  | Capacity improvements        |
| 30    | T-15-01     | LED Street Lights                                  | Various               | 544                  | Street lighting improvements |
| 31    | T-16-01     | ADA Sidewalk<br>Transition Program                 | Various               | 120                  | Sidewalk improvements        |
| Total | Estimated ( | Cost. 2016-2021                                    | 72.213                |                      |                              |

Note: Projects necessary to maintain LOS concurrency standards are highlighted

## Conclusion

This memo describes the results of the Mount Vernon citywide planning and operational model updates, level of service forecasts, and recommended transportation improvement projects. This information will update the technical component of the Transportation Element of the 2016 Comprehensive Plan update.

If you have any questions or need clarification related to any of the existing conditions described above, please contact me at your convenience.

Regards,

**Transportation Solutions, Inc.** 

Andrew L. Bratlien, PE Senior Transportation Engineer



# MEMO

DATE: June 20, 2016

TO: Brad Johnson, City of Burlington

FROM: Rebecca Lowell, CEDD

RE: Transportation System Impacts to the City of Burlington [RCW 36.70A.070(6)(a)(v)]

To ensure coordination between the Mount Vernon citywide traffic planning model and the Skagit Council of Governments (SCOG) regional planning model, specifically with regard to trips entering and exiting Mount Vernon, the attached updated forecast was completed and is being forwarded to you.

This is being sent to you as the City's assessment of impacts to the City of Burlington's transportation systems from Mount Vernon's forecasted growth and traffic. As you are aware, this assessment is required per RCW 36.70A.070(6)(a)(v).

## ATTACHED:

Traffic Forecast & 20-Year Needs Update, June 13, 2016, prepared by Transportation Solutions, Inc.